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Outlines

• Density estimation
• Nonparametric kernel density estimation
• Mixture Densities
• Unsupervised Learning - Clustering:

– Hierarchical Clustering
– K-means Clustering
– Mean Shift Clustering
– Spectral Clustering – Graph Cuts
– Application to Image Segmentation
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Density Estimation

• Parametric: Assume a single model for p (x | Ci) (Chapter 4 and 5)
• Semiparametric: p (x | Ci) is a mixture of densities

Multiple possible explanations/prototypes:
Different handwriting styles, accents in speech

• Nonparametric: No model; data speaks for itself (Chapter 8)
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Nonparametric Density Estimation

Density Estimation: Given a sample S={xi}i=1..N from a distribution obtain 
an estimate of the density function         at any point. 

Parametric : Assume a parametric density family f (.|θ) ,  (ex. N(µ,σ2) ) 
and obtain the best estimator     of θ

Advantages:
• Efficient
• Robust to noise: robust estimators can be used
Problem with parametric methods
• An  incorrectly specified parametric model has a bias that cannot be 

removed even by large number of samples.

Nonparametric : directly obtain a good estimate        of  the entire density
from the sample.

Most famous example: Histogram

θ
)

)(⋅f
)

)(⋅f

)(⋅f
)



3

CS 536 – Density Estimation - Clustering  - 5

Kernel Density Estimation

• 1950s + (Fix & Hodges 51, Rosenblatt 56, Parzen 62, Cencov 62)
• Given a set of samples S={xi}i=1..N we can obtain an estimate for the 

density at x as:
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where Kh(t)=K(t/h)/h called kernel function (window function)
h : scale or bandwidth
K satisfies certain conditions, e.g.:

xxi xixi xi xixi xi xixi

)(1)(1)(
11

i

N

i
h

N

i

i xxK
Nh

xxK
Nh

xf −=
−

= ∑∑
==

)

0)( ≥xKh

∫ =1)( dxxKh



4

CS 536 – Density Estimation - Clustering  - 7

Kernel Estimation

• A variety of kernel shapes with 
different properties.

• Gaussian kernel is typically used for 
its continuity and differentiability.

• Multivariate case: Kernel Product 
Use same kernel function with different 
bandwidth h for each dimension.

• General form: avoid to store all the 
samples
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Kernel Density Estimation

Advantages:
• Converge to any density shape with sufficient samples.

asymptotically the estimate converges to any density.
• No need for model specification.
• Unlike histograms, density estimates are smooth, continuous and 

differentiable.
• Easily generalize to higher dimensions.
• All other parametric/nonparametric density estimation methods, e.g., 

histograms, are asymptotically kernel methods.
• In many applications, the densities are multivariate and multimodal 

with irregular cluster shapes.



5

CS 536 – Density Estimation - Clustering  - 9

Example: color clusters
• Cluster shapes are irregular 
• Cluster boundaries are not well defined.

�rom�����omaniciu and�����eer����ean�shift����robust�
approach�toward�feature�space�analysis��
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Conversion - KDE

Estimation using Gaussian Kernel Estimation using Uniform Kernel
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Conversion - KDE

Estimation using Gaussian Kernel Estimation using Uniform Kernel
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Scale selection
• Important problem. Large literature.

• Small h results in ragged densities.

• Large h results in over smoothing.

• Best choice for h depends on the number 
of samples:

• small n, wide kernels

• large n, Narrow kernels

• 0)(lim =
∞→

nh
n
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Optimal scale
• Optimal kernel and optimal scale can be 

achieved by minimizing the mean 
integrated square error – if we know the 
density !

• Normal reference rule:

5/15/15/1 ˆ06.1)3/4( −− ⋅≈⋅= nnhopt σσ
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Scale selection
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From R. O. Duda, P. E. Hart, and D. G. Stork. “Pattern Classification” Wiley, New 
York, 2nd edition, 2000
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Density Estimation

• Parametric: Assume a single model for p (x | Ci) (Chapter 4 and 5)
• Semiparametric: p (x | Ci) is a mixture of densities

Multiple possible explanations/prototypes:
Different handwriting styles, accents in speech

• Nonparametric: No model; data speaks for itself (Chapter 8)



9

CS 536 – Density Estimation - Clustering  - 17

Mixture Densities

where Gi the components/groups/clusters, 
P ( Gi ) mixture proportions (priors),
p ( x | Gi) component densities

Gaussian mixture where p(x|Gi) ~ N ( µi , ∑i ) 

parameters Φ = {P ( Gi ), µi , ∑i }k
i=1 

unlabeled sample X={xt}t (unsupervised learning)
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Classes vs. Clusters 

• Supervised: X = { xt ,rt }t 

• Classes Ci i=1,...,K

where p ( x | Ci) ~ N ( µi , ∑i ) 
• Φ = {P (Ci ), µi , ∑i }K

i=1

• Unsupervised : X = { xt }t 

• Clusters Gi i=1,...,k

where p ( x | Gi) ~ N ( µi , ∑i ) 
• Φ = {P ( Gi ), µi , ∑i }k

i=1

Labels, r ti ?
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k-Means Clustering

• Find k reference vectors (prototypes/codebook vectors/codewords) which
best represent data

• Reference vectors, mj, j =1,...,k
• Use nearest (most similar) reference:

• Reconstruction error
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Encoding/Decoding
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k-means Clustering
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K-means clustering using intensity alone and color alone
K=5 segmented image is labeled with cluster means

Image Clusters on intensity Clusters on color
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K-means using color alone, 11 segments

Image Clusters on color
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K-means using color alone, 11 segments.

CS 536 – Density Estimation - Clustering  - 26

K-means using color and
position, 20 segments
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Hierarchical Clustering

• Cluster based on similarities/distances
• Distance measure between instances xr and xs

Minkowski (Lp) (Euclidean for p = 2)

City-block distance

( ) ( )[ ] pd

j

ps
j

r
j

sr
m xxd

/1

1
, ∑ =

−=xx

( ) ∑ =
−=

d

j
s
j

r
j

sr
cb xxd

1
,xx

CS 536 – Density Estimation - Clustering  - 28

Hierarchical Clustering:

• Agglomerative clustering – clustering by merging – bottom-up
– Each data point is assumed to be a cluster
– Recursively merge clusters
– Algorithm:

• Make each point a separate cluster
• Until the clustering is satisfactory

– Merge the two clusters with the smallest inter-cluster distance

• Divisive clustering – clustering by splitting – top-down
– The entire data set is regarded as a cluster
– Recursively split clusters
– Algorithm:

• Construct a single cluster containing all points
• Until the clustering is satisfactory

– Split the cluster that yields the two components with the largest inter-cluster 
distance
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Hierarchical Clustering:

• Two main issues:
• What is a good inter-cluster distance

– single-link clustering: distance between the closest elements -> extended 
clusters

– complete-link clustering: the maximum distance between elements –> 
rounded clusters

– group-average clustering: Average distance between elements – rounded 
clusters

• How many clusters are there (model selection)
• Dendrograms

– yield a picture of output as clustering process continues
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Agglomerative Clustering

• Start with N groups each with one instance and merge two closest 
groups at each iteration

• Distance between two groups Gi and Gj:
– Single-link: 

– Complete-link:

– Average-link, centroid

( ) ( )sr
ji dd

j
s

i
r

xx
xx

,min,
, GG

GG
∈∈

=

( ) ( )sr
ji dd

j
s

i
r

xx
xx

,max,
, GG

GG
∈∈

=



16

CS 536 – Density Estimation - Clustering  - 31

Dendrogram

Example: Single-Link Clustering
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Choosing k

• Defined by the application, e.g., image quantization
• Plot data (after PCA) and check for clusters
• Incremental (leader-cluster) algorithm: Add one at a time until “elbow”

(reconstruction error/log likelihood/intergroup distances)
• Manual check for meaning
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Mean Shift
• Given a sample S={si:si∈ Rn} 

and a kernel K, the sample mean 
using K at point x:

• Iteration of the form x ← m(x)
will lead to the density local 
mode

• Let x is the center of the window
Iterate until conversion.

– Compute the sample mean m(x)
from the samples inside the 
window.

– Replace x with m(x)
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Mean Shift

• Given a sample S={si:si∈ Rn} and a kernel K, the sample mean using K
at point x:

• Fukunaga and Hostler 1975 introduced the mean shift as the difference 
m(x)-x using a flat kernel.

• Iteration of the form x ← m(x) will lead to the density mode
• Cheng 1995 generalized the definition using general kernels and 

weighted data

• Recently popularized by D. Comaniciu and P. Meer 99+
• Applications: Clustering[Cheng,Fu 85], image filtering, 

segmentation[Meer 99] and tracking [Meer 00].
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Mean Shift

• Iterations of the form x ← m(x) are called mean shift algorithm.
• If K is a Gaussian (e.g.) and the density estimate using K is

• Using Gaussian Kernel Kσ(x), the derivative is                           
we can show that:

• the mean shift is in the gradient direction of the density estimate. 
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Mean Shift

• The mean shift is in the gradient direction of the density estimate. 
• Successive  iterations would converge to a local maxima of the 

density, i.e., a stationary point: m(x)=x .
• Mean shift is a steepest-ascent like procedure with variable size steps 

that leads to fast convergence “well-adjusted steepest ascent”.
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Mean shift and Image Filtering
Discontinuity preserving smoothing
• Recall, average or Gaussian filters blur images and do not preserve region 

boundaries.
Mean shift application:
• Represent each pixel x as spatial location xs and range xr (color, intensity)
• Look for modes in the joint spatial-range space
• Use a product of two kernels: a spatial kernel with bandwidth hs and a range 

kernel with bandwidth hr 

• Algorithm: 
For each pixel xi=(xi

s,xi
r)

– apply mean shift until conversion. Let the conversion point be (yi
s,yi

r)
– Assign zi = (xi

s,yi
r) as filter output

• Results: see the paper.
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What is a Graph Cut:
• We have undirected, weighted graph G=(V,E)
• Remove a subset of edges to partition the graph into two disjoint sets 

of vertices A,B (two sub graphs):
A ∪ B = V, A ∩ B = Φ

Graph Cut
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• Each cut corresponds to some cost (cut): sum of the weights for the 
edges that have been removed.

Graph Cut
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• In many applications it is desired to find the cut with minimum cost: 
minimum cut 

• Well studied problem in graph theory, with many applications
• There exists efficient algorithms for finding minimum cuts 

Graph Cut
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Graph theoretic clustering

• Represent tokens using a weighted graph
– Weights reflects similarity between tokens
– affinity matrix

• Cut up this graph to get subgraphs such that:
– Similarity within sets maximum.
– Similarity between sets minimum.

⇒ Minimum cut
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• Use exponential function for edge weights

d(x) : feature distance
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Scale affects affinity

σ=0.1 σ=0.2 σ=1
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Eigenvectors and clustering
• Simplest idea:  we want a vector w 

giving the association between 
each element and a cluster

• We want elements within this 
cluster to, on the whole, have 
strong affinity with one another

• We could maximize  

n
T
n Aww

Association of element i with cluster n   ×
Affinity between i and j   ×

Association of element j with cluster n 

Sum of

w
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Eigenvectors and clustering
• We could maximize  

• But need the constraint 

• Using Lagrange multiplier λ

• Differentiation

• This is an eigenvalue problem - choose the eigenvector of A with largest 
eigenvalue
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Example eigenvector

points

matrix

eigenvector
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Example eigenvector

points matrix

The three eigenvectors corresponding to the next three eigenvalues of the affinity matrix

First eigenvectors
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eigenvalues for three different scales for the affinity matrix

More obvious clustersToo many clusters !
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More than two segments

• Two options
– Recursively split each side to get a tree, continuing till the eigenvalues are 

too small
– Use the other eigenvectors

Algorithm
• Construct an Affinity matrix A
• Computer the eigenvalues and eigenvectors of A
• Until there are sufficient clusters

– Take the eigenvector corresponding to the largest unprocessed eigenvalue; 
zero all components for elements already clustered, and threshold the 
remaining components to determine which element belongs to this cluster, 
(you can choose a threshold by clustering the components, or use a fixed 
threshold.)

– If all elements are accounted for, there are sufficient clusters
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We can end up with eigenvectors that do not split clusters because any 
linear combination of eigenvectors with the same eigenvalue is also an 
eigenvector.
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Sources

• R. O. Duda, P. E. Hart, and D. G. Stork. “Pattern Classification.”
Wiley, New York, 2nd edition, 2000

• Ethem Alpaydin “Introduction to Machine Learning” Chapter 7
• Forsyth and Ponce, Computer Vision a Modern approach: chapter 14: 

14.1,14.2,14.4.
• Slides by

– D. Forsyth @ Berkeley

• Slides by Ethem Alpaydin


